Chronic renal injury-induced hypertension alters renal NHE3 distribution and abundance.

نویسندگان

  • Li E Yang
  • Huiqin Zhong
  • Patrick K K Leong
  • Anjana Perianayagam
  • Vito M Campese
  • Alicia A McDonough
چکیده

Renal cortical phenol injection provokes acute sympathetic nervous system-dependent hypertension and a shift of proximal tubule Na(+)/H(+) exchanger isoform 3 (NHE3) and Na(+)-P(i) cotransporter type 2 (NaPi2) to apical microvilli. This study aimed to determine whether proximal tubule (PT) Na(+) transporter redistribution persists chronically and whether the pool sizes of renal Na(+) transporters are altered. At 5 wk after a 50-microl 10% phenol injection, blood pressure is elevated: 154 +/- 8 vs. 113 +/- 11 mmHg after saline injection. Cortical membranes were fractionated into three "windows" enriched in apical brush border (WI), mixed apical and intermicrovillar cleft (WII), and intracellular membranes (WIII). NHE3 relative distribution in these windows, assessed by immunoblots and expressed as %total, remained shifted to apical from intracellular membranes (WI: 25.3 +/- 3 in phenol vs.12.7 +/- 3% in saline and WIII: 9.1 +/- 1.3 in phenol vs. 18.9 +/- 3% in saline). NaPi2 and dipeptidyl-peptidase IV also remained shifted to WI, and alkaline phosphatase activity increased 100.9 +/- 29.7 (WI) and 51.4 +/- 17.5% (WII) in phenol-injected membranes. Na(+) transporter total abundance [NHE3, NaPi2, thiazide-sensitive Na-Cl cotransporter, bumetanide-sensitive Na-K-2Cl cotransporter, Na-K-ATPase alpha(1)- and beta(1)-subunits, and epithelial Na(+) channel (ENaC) alpha- and beta-subunits] was profiled by immunoblotting. Only cortical NHE3 abundance was altered, decreasing to 0.56 +/- 0.06. The results demonstrate that phenol injury provokes a persistant shift of PT NHE3 and NaPi2 to the apical microvilli, along with a 44% decrease in total NHE3, evidence for an escape mechanism that would counteract the redistribution of a larger fraction of NHE3 to the apical surface by normalizing the total amount of NHE3 in apical membranes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ISN Forefronts Symposium 2015: Maintaining Balance Under Pressure—Hypertension and the Proximal Tubule

Renal control of effective circulating volume is key for circulatory performance. When renal Na+ excretion is inadequate, blood pressure rises and serves as a homeostatic signal to drive natriuresis to re-establish effective circulating volume (ECV). Recognizing that hypertension involves both renal and vascular dysfunction, this report concerns proximal tubule Na+/H+ exchanger 3 (PT NHE3) regu...

متن کامل

Phenol injury-induced hypertension stimulates proximal tubule Na+/H+ exchanger activity.

Injection of 50 microl 10% phenol into rat renal cortex activates renal sympathetic nerve activity which provokes acute hypertension that persists for weeks. We have previously shown with membrane fractionation that phenol injury caused a redistribution of the main proximal tubule (PT) apical transporter NHE3 (Na+/H+ exchanger isoform 3) to low density membranes enriched in apical microvilli. T...

متن کامل

Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance.

Prenatal glucocorticoids are often administered to pregnant women to accelerate pulmonary maturation. We have demonstrated that administration of dexamethasone during specific periods of pregnancy in the rat causes hypertension in the offspring when they are studied as adults. The purpose of the present study was to determine whether the hypertension due to prenatal dexamethasone was mediated b...

متن کامل

Proximal tubule Na transporter responses are the same during acute and chronic hypertension.

Acute hypertension in Sprague-Dawley rats (SD) provokes a decrease in renal proximal tubule (PT) salt and fluid reabsorption, redistribution of apical Na/H exchanger isoform 3 (NHE3) and Na-P(i) cotransporter type 2 (NaPi2) out of the brush border into higher density membranes, and inhibition of renal cortical Na-K-ATPase (NKA) activity (41). The aims of this study were to determine 1) whether ...

متن کامل

Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension.

The renal mechanisms responsible for angiotensin II (ANG II)-induced hypertension remain incompletely understood. The present study tested the hypothesis that the Na(+)/H(+) exchanger 3 (NHE3) is required for ANG II-induced hypertension in mice. Five groups of wild-type (Nhe3(+/+)) and Nhe3(-/-) mice were treated with vehicle or high pressor doses of ANG II (1.5 mg/kg/day ip, via minipump for 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 284 5  شماره 

صفحات  -

تاریخ انتشار 2003